Multimeter adalah alat test yang sangat berguna. dengan mengoperasikan sakelar banyak posisi, meter dapat secara cepat dan mudah dijadikan sebagai sebuahvoltmeter, sebuah ammeter atau sebuah ohmmeter. Alat ini mempunyai berbagai penepatan (disebut 'range') pada setiap mempunyai pilihan AC atau DC. Beberapa multimeter kelebihan tambahan layaknya sebagai pengukur transistor dan range untuk pengukuran kapasitansi dan frekuensi
Pemilihan multimeter
Multimeter Digital
sebuah digital multimeter merupakan pilihan terbaik pertama, berharga lebih murah dan cocok untuk pengujian proyek sederhana.
jika membeli multimeter analog yakinkan bahwa bersensitivitas tinggi setidaknya 20k /V atau lebih pada jangkah/range DC , kurang dari itu tidak cocok untuk pengukuran elektronik. Penandaan sentisitivitas normalnya berada pada pojok skala meter, abaikan nilai AC yang lebih rendah (sensitivitas pada jangkah AC tidak penting), jika nilai DC yang lebih tinggi menjadi sangat kritis.Yang ada pada analog multimeter yang dijual murah untuk pekerjaan listrik dalam mobil sensitivitasnya sangat rendah.
Seluruh multimeter digital mempunyai batteray untuk memberi daya pada penampilannya juga tidak membutuhkan daya dari rangkaian dalam pengukurannya . Ini berarti dalam jangkah DC mempunyai resistansi tinggi (biasa disebut impedansi input) dalam 1M atau lebih, biasanya 10M , dan sangat tidak mempengaruhi pada rangkaian yang diukur.
Rata-rata jangkah ukur untuk multimeter digital:
(merupakan nilai maksimum pembacaan pada setiap jangkahnya)
• Tegangan DC: 200mV, 2000mV, 20V, 200V, 600V.
• Tegangan AC: 200V, 600V.
• Arus DC: 200µA, 2000µA, 20mA, 200mA, 10A*.
* Jangkah10A biasanya tak berpemutus arus disambung dengan socket khusus.
• Arus AC: Tak ada. (Anda menginginkan mengukurnya).
• Resistansi: 200 , 2000 , 20k , 200k , 2000k , Diode Test.
Meter digital mempunyai kekhususan pengetes diode sebab jangkah pengukur resistansinya tidak dapat untuk mengukur diode dan komponen semikoduktor yang lain.
Multimeter Analog
Meter-meter Analog mengambil sedikit tenaga dari rangkaian yang diuji untuk mengoperasikan jarum penunjuknya. Alat harus bersensitivitas tinggi setidaknya 20k /V atau memposisikan pembenahan pembacaan untuk rangkaian yang diuji. Cermati pada sesi dibawah ini sensitivitas untuk telitinya.
Battery didalam meter untuk menyediakan jangkah pengukuran resistansi, akan habis dalam masa tahunan tetapi membiarkan meter pada jangkah pengukuran resistansi akan membuat batteray terus bekerja sampai habis.
Jangkah rata-rata multimeter analog seperti digambarkan:
(Nilai teganagan dan arus adalah nilai maksimum setiap jangkah ukur)
• Tegangan DC: 0.5V, 2.5V, 10V, 50V, 250V, 1000V.
• Tegangan AC: 10V, 50V, 250V, 1000V.
• Arus DC: 50µA, 2.5mA, 25mA, 250mA.
Jangkah ukur arus tinggi hilang pada tipe meter ini.
• Arus AC: Tak ada. (Anda menginginkan mengukurnya).
• Resistansi: 20 , 200 , 2k , 20k , 200k .
Nilai resistansi adalah nilai tengah setiap jangkah pengukuran.
Merupakan ide yang bagus untuk multimeter analog meletakkan jangkah tegangan DC layaknya 10V ketika tidak digunakan. Adalah agar tidak rusak oleh pemakaian sembrono jangkah ini, dan mudah diubah kemanapun sesuai yang diinginkan!
Sensitivitas dari multimeter analog
Multimeter harus berada pada sensitivitas tinggi setidaknya 20k /V dengan kata lain jangkah tegangan DC berada sangat rendah perlu pembenaran pembacaan. Untuk memenuhi pembacaan yang benar(valid) resistansi meter harus sepuluh kali resistansi alat yang diukur (lakukan ini , nilai lebih tinggi dekat dengan dimana meter dihubungkan). anda dapat menaikan resistansi meter dengan memilih jangkah ukur yang lebih tinggi ,tetapi akan mendapatkan pembacaan dengan akurasi yang sangat rendah!
Pada beberapa jangkah ukur teganagan DC:
Meter Analog Resistansi = Sensitivitas × Max. jangkah pembacaan
contoh sebuah meter denganh 20k /V sensitivitas saat jangkah 10V dengan resistansi 20k /V × 10V = 200k .
Berkebalikan, multimeter digital memiliki resistansi konstan 1M (often 10M ) untuk seluruh jangkah ukur tegangan DC. Ini lebih dari cukup untuk seluruh rangkaian.
Yuk Berelektronika
Blog ini untuk sharing bagi penghoby elektronika
multimeter
Jenis-jenis transistor
Secara umum, transistor dapat dibeda-bedakan berdasarkan banyak kategori:
• Materi semikonduktor: Germanium, Silikon, Gallium Arsenide
• Kemasan fisik: Through Hole Metal, Through Hole Plastic, Surface Mount, IC, dan lain-lain
• Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET, VMOSFET, MESFET, HEMT, SCR serta pengembangan dari transistor yaitu IC (Integrated Circuit) dan lain-lain.
• Polaritas: NPN atau N-channel, PNP atau P-channel
• Maximum kapasitas daya: Low Power, Medium Power, High Power
• Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain
• Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain
BJT
BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).
Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.
FET
FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.
FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode.
Cara kerja transistor
Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.
Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.
FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat diubah dengan perubahan tegangan yang diberikan, untuk mengubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.
Transistor
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.
Cara kerja semikonduktor
Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.
Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang serupa; keduanya mengatur jumlah aliran arus listrik.
Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah non-konduktor (isolator), karena pembawa muatanya tidak bebas.
Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.
Selain dari itu, silikon dapat dicampur dengan Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.
Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).
Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor tipe-n dibuat dalam satu keping silikon, pembawa-pembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.
Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.
Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk mengubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat diubah menjadi isolator, sedangkan metal tidak.
Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.